240 research outputs found

    The many facets of string transducers

    Get PDF
    Regular word transductions extend the robust notion of regular languages from a qualitative to a quantitative reasoning. They were already considered in early papers of formal language theory, but turned out to be much more challenging. The last decade brought considerable research around various transducer models, aiming to achieve similar robustness as for automata and languages. In this paper we survey some older and more recent results on string transducers. We present classical connections between automata, logic and algebra extended to transducers, some genuine definability questions, and review approaches to the equivalence problem

    Equivalence of finite-valued streaming string transducers is decidable

    Get PDF
    In this paper we provide a positive answer to a question left open by Alur and and Deshmukh in 2011 by showing that equivalence of finite-valued copyless streaming string transducers is decidable

    One-way definability of sweeping transducers

    Get PDF
    Two-way finite-state transducers on words are strictly more expressive than one-way transducers. It has been shown recently how to decide if a two-way functional transducer has an equivalent one-way transducer, and the complexity of the algorithm is non-elementary. We propose an alternative and simpler characterization for sweeping functional transducers, namely, for transducers that can only reverse their head direction at the extremities of the input. Our algorithm works in 2EXPSPACE and, in the positive case, produces an equivalent one-way transducer of doubly exponential size. We also show that the bound on the size of the transducer is tight, and that the one-way definability problem is undecidable for (sweeping) non-functional transducers

    Minimizing resources of sweeping and streaming string transducers

    Get PDF
    We consider minimization problems for natural parameters of word transducers: the number of passes performed by two-way transducers and the number of registers used by streaming transducers. We show how to compute in ExpSpace the minimum number of passes needed to implement a transduction given as sweeping transducer, and we provide effective constructions of transducers of (worst-case optimal) doubly exponential size. We then consider streaming transducers where concatenations of registers are forbidden in the register updates. Based on a correspondence between the number of passes of sweeping transducers and the number of registers of equivalent concatenation-free streaming transducers, we derive a minimization procedure for the number of registers of concatenation-free streaming transducers

    One-way definability of two-way word transducers

    Get PDF
    Functional transductions realized by two-way transducers (or, equally, by streaming transducers or MSO transductions) are the natural and standard notion of `regular' mappings from words to words. It was shown in 2013 that it is decidable if such a transduction can be implemented by some one-way transducer, but the given algorithm has non-elementary complexity. We provide an algorithm of different flavor solving the above question, that has doubly exponential space complexity. In the special case of sweeping transducers the complexity is one exponential less. We also show how to construct an equivalent one-way transducer, whenever it exists, in doubly or triply exponential time, again depending on whether the input transducer is sweeping or two-way. In the sweeping case our construction is shown to be optimal

    On the decomposition of finite-valued streaming string transducers

    Get PDF
    We prove the following decomposition theorem: every 1-register streaming string transducer that associates a uniformly bounded number of outputs with each input can be effectively decomposed as a finite union of functional 1-register streaming string transducers. This theorem relies on a combinatorial result by Kortelainen concerning word equations with iterated factors. Our result implies the decidability of the equivalence problem for the considered class of transducers. This can be seen as a first step towards proving a more general decomposition theorem for streaming string transducers with multiple registers

    Untwisting two-way transducers in elementary time

    Get PDF
    Functional transductions realized by two-way transducers (equivalently, by streaming transducers and by MSO transductions) are the natural and standard notion of ``regular'' mappings from words to words. It was shown recently (LICS'13) that it is decidable if such a transduction can be implemented by some one-way transducer, but the given algorithm has non-elementary complexity. We provide an algorithm of different flavor solving the above question, that has double exponential space complexity. We further apply our technique to decide whether the transduction realized by a two-way transducer can be implemented by a sweeping transducer, with either known or unknown number of passes

    One-way resynchronizability of word transducers

    Get PDF
    The origin semantics for transducers was proposed in 2014, and it led to various characterizations and decidability results that are in contrast with the classical semantics. In this paper we add a further decidability result for characterizing transducers that are close to one-way transducers in the origin semantics. We show that it is decidable whether a non-deterministic two-way word transducer can be resynchro-nized by a bounded, regular resynchronizer into an origin-equivalent one-way transducer. The result is in contrast with the usual semantics, where it is undecidable to know if a non-deterministic two-way transducer is equivalent to some one-way transducer

    Using contracted solution graphs for solving reconfiguration problems.

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    Using contracted solution graphs for solving reconfiguration problems

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs
    • …
    corecore